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SUMMARY

New results concerning optimal design with accelerometers are presented. These results

show that the designer must be concemed with the stability properties of two Linear Quadratic

Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop

system dynamics. The new concepts of virtual and implemented compensators are introduced to

cope with these subtleties: The virtual compensator appears in the closed-loop system dynamics

and the implemented compensator appears in control electronics. The stability of one compensator

does not guarantee the stability of the other. For strongly stable (robust) systems, both

compensators should be stable. The presence of controlled and uncontrolled modes in the system

results in two additional forms of the compensator with corresponding terms that are of like form,

but opposite sign, making simultaneous stabilization of both the virtual and implemented

compensator difficult. A new design algorithm termed sensor augmentation is developed that

aids stabilization of these compensator forms by incorporating a static augmentation term

associated with the uncontrolled modes in the design process.

* Portions of this work were accomplished under NASA contract NAS 1-19241, Task 2,

Dr. Suresh M. Joshi, Technical Monitor.

407



1.0 INTRODUCTION

Dynamic systems that are not strictly proper complicate linear quadratic gaussian (LQG)

control design. These dynamic systems are characterized by transfer functions where the order of

the numerator equals the denominator. Sensors, such as accelerometers, whose transfer functions

are not strictly proper can also generate such systems. Linear time invariant systems that employ

these sensors may be represented in the time domain by state space equations characterized by the

matrix quadruplet (A, B, C, D) where A is the plant matrix, B is the input (influence) matrix, C is

the output (sensor) matrix, and D is a thru-put matrix representing the direct transmission

properties associated with systems that are not strictly proper. The presence of the D matrix

complicates LQG control design particularly in the area of compensator stability, and consequently

closed-loop system robustness. The designer must consider two forms of the optimal

compensator, one of which does not explicitly appear in the closed-loop system dynamics.

There is very little consideration of systems that are not strictly proper in the optimal control

literature. Standard texts on optimal control (refs. 1-7) do not consider these systems in the context

of LQG closed-loop control. A preliminary version of the material presented in this paper is

contained in ref. (8).

This paper is organized as follows: Section 2 derives the two LQG compensator forms

required for design and introduces the concepts of implemented and virtual compensators. Section

3 considers additional compensator forms caused by the presence of neglected known vibration

modes (suppressed modes) which are not explicitly modeled in the control design process. Section

4 presents a design algorithm termed sensor augmentation that copes with the complexities

introduced by the suppressed (neglected) vibration modes, and Section 5 presents our conclusions.

2.0 IMPLEMENTED AND VIRTUAL COMPENSATORS

The LQG compensator plays a significant role in the determination of closed-loop

robustness properties. As shown in Figure 1, the compensator is that dynamic system that has the

sensor vector as its input and the control vector as its output. Its dynamics are determined by the

transfer function matrix between points "a" and "b" of Figure 1.
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Figure 1. LQG compensator stability affects robustness.

In general, the stability properties of the compensator tend to influence the robustness

properties of the closed-loop system. For strictly proper systems (no D matrix) the designer must

consider only one compensator form; however, for systems incorporating a D matrix in their

description, two compensator forms must be considered: an implemented and a virtual

compensator. The implemented compensator has the sensor vector as its input, which drives the

estimator-based dynamics. These dynamics, which are functions of the D matrix, do not explicitly

appear in the matrix description of the closed-loop system. Conversely, the virtual compensator

dynamics are not functions of the D matrix, but do appear in the closed-loop system matrix. For

strictly proper systems (no D matrix) the implemented compensator dynamics and the virtual

compensator dynamics are identical. The development of the two compensator forms is

accomplished by direct substitution of the LQG control and estimation laws in the plant dynamics.

The implemented compensator emerges by careful distinction between the sensed and computed

variables of the closed-loop system.

Consider the following open-loop, dynamic system

= Ax + Bu (1)

y = Cx + Du (2)

where x(n x 1) is the state vector, u(r x 1) is the control vector, y(s x 1) is the output vector and

(A, B, C, D) are matrices of appropriate dimension. For flexible structure control, the A matrix is

composed of modal frequencies and damping factors, the B and C matrices are based on
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eigenvector solutions of the finite element model characterizing the structure. For such systems

employing accelerometers, the D matrix has the following form

D = CB (3)

The control law is

A
u -- - K x (4)

A

where K(r x n) is the optimal feedback control matrix and x(n x 1) is the estimated state vector.

The state estimator has the following form

=A_+Bu+G(y- _) (5)

A

where G(n x s) is the estimator gain matrix and y (s x 1) is the estimated output vector.

Implemented Compensator Derivation

A

The implemented compensator dynamics are now derived. Substituting u = -K x in the

A A

estimator dynamics for the control law, and y = C x + Du for the estimated sensor vector yields

_X ^ A= (A- BK) x - G(Cx + Du) +Gy (6)

A

Substituting u = -K x for the control vector in equation (6) and collecting terms yields

Lx= (A- BK- GC + GDK)_ + Gy (7)

Equation (7) characterizes the implemented compensator dynamics for the closed-loop system.

The sensor vector is an input that drives the estimation-based dynamic system for the compensator.
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In sequel, we shall show that although the implemented compensator is necessary to generate the

required closed-loop dynamics, it does not explicitly appear in the closed-loop system matrix.

Virtual Compensator Derivation

The virtual compensator dynamics are derived by continued expansion of the dynamic

expression for the implemented compensator. Substituting y = Cx + Du for the sensor vector in

equation (7) yields

A= (A - BK - GC + GDK) x + G(Cx + Du) (8)

A

Substituting u = -K x in equation (8) yields

(A BK-GC+GDK)_+GCx GDK ^ (9)

^

Collecting terms in x yields the virtual compensator dynamics

x = (A- BK- GC)_ + GCx (10)

where we note that the D matrix has been eliminated from equation (10).

Inspection of the closed-loop dynamics matrix shows that the D matrix, which may

influence robustness properties, has been eliminated from the closed-loop system description.

Only the virtual compensator appears. Comparison of the implemented compensator dynamics

(equation 7) and the virtual compensator dynamics (equation 10) shows that the two expressions

are not identical and, in general, will not have the same eigenvalues. In fact, the stability of one of

^

these compensator forms does not guarantee the stability of the other. Substituting u = -K x in

equation (1) and assembling equations (1) and (10) in matrix form yields the closed-loop system

matrix
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GC A - BK - GC

(11)

As the expression containing the D matrix does not appear in equation (11), the implemented

compensator could be unstable and this fact would not be detected by a closed-loop eigenvalue

analysis. Thus, both compensator forms must be checked in order to ensure the design of a

strongly stable system in the sense of reference 9.

_[_[__ (sI - A) -1

Y

Implemented Compensator

bq

A
X

(sI - A) -1

Figure 2. Implemented compensator detail shows the effect of the thru-put matrix

Figure 2 provides a detailed matrix block diagram of the implemented compensator for

systems that are not strictly proper. Examination of this diagram provides insight to the

compensator problem. The compensator dynamics are characterized by the transfer function matrix

between points "a" and "b" of Figure 2. The control vector, u, is multiplied by the D matrix and

A A
summed with C x to form the estimated sensor vector, y. However, the sensor vector, y, contains
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A

an identical term, Du, involving the control vector. As the two sensor vectors, y and y, are

subtracted at the compensator summing junction, any terms involving the matrix D are eliminated

from the closed-loop system matrix, i.e., the compensator is uncontrollable, in u, at the sensor

summing junction. This condition is analogous to that which occurs during estimator design using

the separation principle with strictly proper systems, i.e., the separation principle holds (ref. 10)

and the estimator is uncontrollable via the control vector. The separation principle also holds for

systems that are not strictly proper; however, one must consider both the error space and

implementation space during the design process: the component of the control vector transmitted

by the D matrix is eliminated from the closed-loop dynamics in the implementation space. In this

context, a partial separation principle can be said to hold, and the compensator dynamics appear to

be determined solely by the (A, B, C) matrices.

The presence of unmodeled dynamic (suppressed) modes further complicates the design

process. In this case the D matrix cancellation is incomplete in the implementation space, and the

implemented and virtual compensators have differing dynamics that are functions of different

modal thru-put matrices. This phenomenon is discussed in the following section.

3.0 LQG COMPENSATOR DYNAMICS AND SUPPRESSED MODES

The presence of uncontrolled vibration dynamics significantly complicates the compensator

design process. The implemented and virtual compensator dynamic matrices contain corre-

sponding terms of similar form, but opposite sign, that can severely constrain the compensator

stabilization process. Consider the following open-loop dynamic system representing a flexible

structure

I clIAcolExcI: EBcllXsj o As Xs Bs
u (12)
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Exc][ ]Dc + Ds (13)
y=[C c Cs] Xs + u

where Xc(nc x 1) is the controlled state vector, _(n s x 1) is the suppressed state vector

characterizing the uncontrolled but modeled modes (refs. 11, 12), u(r x 1) is the control vector, and

y(s x 1) is the output vector. The plant submatrices, Ac(n c x nc) and As(n s x rls), are composed

of modal frequencies and damping factors. The input matrices, Bc(n c x r) and Bs(n s x r), the

output matrices, Ce(s x oc) and Cs (s x rls), and the thru-put matrices, Dc(s x r) and Ds (s x r), are

based on eigenvector solutions of the finite element model characterizing the structure. For such

systems employing accelerometers the submatrices comprising the D matrix are given by

D t = Dc + Ds (14)

Dc =CoBc (15)

D s = CsB s (16)

The control law is

A

u = - K x c (17)

where K(r x no) is the optimal feedback matrix and X̂c(n c x 1) is the estimated state vector.

The state estimator has the following form

/_ ^ ^

x c =A cx c +Bcu+G(y- yc ) (18)
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A

where G(n c x s) is the estimator gain matrix and Yc(S x 1) is the estimated output vector for the

controlled states.

Implemented Compensator With Suppressed Modes

The implemented compensator dynamics are now derived. Substituting u = -K _c in the

A A

estimator dynamics for the control law, and Yc = Cc Xc + DcU for the estimated sensor vector

yields

/_ A A

x c =(A c - BcK)Xc - G(Cx c + Dcu) + Gy (19)

A

Substituting u = -K x c for the control law in equation (19) and collecting terms yields

A

x c = (Ac - BcK- GC c + GDcK)X c +Gy
(20)

Equation (20) characterizes the implemented compensator dynamics for the closed-loop system.

We note that the implemented compensator is a function of Dc, the thru-put matrix for the

controlled modes.
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Virtual Compensator With Suppressed M9_1_,5

The virtual compensator dynamics are now derived. Substituting equation (13) for the

sensor vector in equation (20) yields

t_ A

xc =(A_-Bet:-GC_+GDcK)Xc +G(C_xc +Csxs +Ocu+OsU) (21)

A

Substituting u =-K x c in equation (21) yields

Xc (Ac BcK CCe +GDcK)"= xc +c(C_xc +qxs) C(DcI_+DsK)"_ _ _ X c (22)

A

Collecting terms in x c yields the virtual compensator dynamics

xc =%- BcI,:- ccc - GDsI,:)xc +GCexc +Gqxs (23)

where the virtual compensator dynamics are a function of 1_, the thru-put matrix for the

suppressed modes. A term by term examination of the submatrices comprising the dynamic matrix

for the implemented compensator, equation (20), and the virtual compensator, equation (23),

yields the interesting result: The dynamic matrices of the two compensators are composed of

identical submatrices except for those terms arising from the modal thru-put matrices. These

submatrices, GDcK and -GDsK, are similar in form, but opposite in sign. Thus, in general, it

will be difficult to simultaneously stabilize the implemented and virtual compensators. Conflicting

constraints will tend to be placed on the gain matrices G and K.

The closed-loop dynamics in matrix form may be written as
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m m

x c

x S

A

x c

B m

A c 0 BcK

0 A s B s K

CCc Gcs Ac-BcK-GCc-GDs K

m

X c

x S (24)

Examination of equation (24) shows that the implemented compensator dynamics do not appear in

the closed-loop system matrix. Thus, an eigenvalue analysis of this closed-loop matrix would not

reveal the stability properties of the implemented compensator. Both compensator forms must be

checked for stability to design a strongly stable system.

Table 1 shows the dynamic matrices that occur during LQG control design of flexible

structures that employ accelerometers. Included are matrices for the estimator, controller and

various compensator forms. The number of matrix forms requiring stabilization or conditioning is

five, and the number of gain matrices is two. This situation leads to difficulty in design, especially

when one desires stable compensation matrices. A design algorithm is presented in Section 4 to

cope with difficulties introduced by the suppressed modes.

Table 1. LQG Dynamic Matrices For Accelerometer Systems

Controller

Estimator

Virtual Compensator

Implemented Compensator

Virtual Compensator (Suppressed Modes)

Thru-put Term (Controlled Modes)

Thru-put Term (Suppressed Modes)

A c -BcK

Ac -Gc 

Ac - BcK- GC c

A c - BcK- GC¢ + GDcK

A c- BcK-GCe-GDsK

D c =C-eB c

D s = CsB s
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4.0 SENSOR AUGMENTATION

We now develop an algorithm that addresses the problem caused by the suppressed mode

contamination of the virtual compensator dynamics. As shown in the previous section, the

dynamic matrices of the implemented compensator and the virtual compensator differ only in terms

arising from the modal dynamics (compare equations 20 and 23). These modal terms, GDcK and

-GDsK, which are similar in form but opposite in sign, create difficulties for stable compensator

design. The difficulty arises because we are requiring two similar matrix forms of opposite sign to

stabilize identical matrices, i.e., if we define Acomp as the standard LQG dynamic compensator

matrix

Acomp = A - BK - GC (25)

the dynamic matrix for the implemented compensator is

Acomp + GDcK (26)

and that for the virtual compensator is

Acomp - GDsK (27)

As Dc and Ds are of similar structure, the gain matrices G and K will tend to have opposing effects

on the stability properties of the two compensator forms.

We can cope with this problem by developing an algorithm that eliminates the offending

terms caused by the suppressed modes from one of the compensator forms. This is accomplished

by augmenting the estimated sensor output vector with suppressed mode data, i.e., with reference

to equation (14), Dc is replaced by D t in the design process, where
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Dt = Dc + Ds (28)

It shouldbenotedthatthenumberof controlledmodesremainsconstant,andthatthisprocedureis

analogousto incorporatinga "d.c.gain,"or staticportionof thesuppressedmodetransfer

function,into thedesignprocess.Thedesignalgorithmmayalsobeinterpretedasusingahybrid

dynamicmodel,augmentedwith thestaticgainsof theuncontrolled,butmodeledmodes.The
effectof thisprocedureon theimplementedandvirtualcompensatorsis easilyderived. Consider

thefollowing open-loopdynamicsystemrepresentingaflexiblestructure

E clEAc0lExcl+EBcl
XsJ 0 A s x s B s

u (29).

Excl[De+Dslu (30)

where Xc(nc x 1) is the controlled state vector, Xs(n s x 1) is the suppressed state vector

characterizing the uncontrolled but modeled modes (refs. 11, 12), u(r x 1) is the control vector, and

y(s x 1) is the output vector. The plant submatrices,/slz(n c x Oc) and As(n s x rls), are composed

of modal frequencies and damping factors. The input matrices, Bc(n c x r) and Bs (n s x r), the

output matrices, Cc(s x oc) and Cs (s x 0s), and the thru-put matrices, Dc(S x r) and Ds (s x r), are

based on eigenvector solutions of the finite element model characterizing the structure. For such

systems employing accelerometers the submatrices comprising the D matrix are given by

D t = Dc + Ds (31)

D c =CeB c (32)
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D s =CsB s (33)

The control law is

A

u=-Kx c

where K(r x q:) is the optimal feedback matrix and X̂c(n c x 1) is the estimated state vector.

The state estimator has the following form

/_ ^ A

x c =A cx c +Bcu+G(y- yc )

(34)

(35)

^

where G(o c x s) is the estimator gain matrix and Yc(S x 1) is the estimated output vector for the

controlled states. The estimated sensor vector is now given by

A A

YC = CCXc + (De + Ds)U (36)

where Ds has now been included in the design process, i.e., the sensor has been augmented.

Implemented Compensator Using Sensor Augmentation

The implemented compensator dynamics are now derived. Substituting u = -K _c in the

^ ^

estimator dynamics (equation 35) for the control law, and Yc = Cc Xc + (De + Ds)u for the

estimated sensor vector yields
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/_ A A

x c : (Ac - BcK)x c - G(C c x c + Dcu + Dsu) + Gy (37)

A

Substituting u = -K x c in equation (37) yields

X
x c =(A c-BcK-GC e +GDcK+GDsK)x c^ +Gy (38)

Substituting the relationship D t = Dc + Ds in equation (38) yields

/_ ^

x c =(A c -BcK-GC c + GDtK)x c +Gy (39)

which is the desired expression for the implemented compensator dynamics. Examination of the

dynamics for this compensator, which uses augmented sensor data, and those of the unaugmented

compensator of equation (20) shows that they differ by the term GDs K which appears in equation

(38).

Virtual Compensator With Sensor Augmentation

The expression for the augmented virtual compensator dynamics may now be derived.

Substituting equation (13) for the sensor vector in equation (39), and noting that D t = Dc + Ds,

yields

x c = (Ac - BcK- GC c + GDtK)x c + G(Ccx c + Csx s + Dtu) (40)
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A

Substituting u = -K x c in equation (40) yields

/_ A A

x c = (Ac - BcK- GC c + GDtK)x c + G(Ccx c + Csxs) - GDtK x c (41)

A

Collecting terms in x c yields the virtual compensator dynamics

×c= BcK-GC )xc+G(Ccxc+ qxs) (42)

The closed-loop dynamics may be written in matrix form as

B m

X c

i
i

]Xs

A

X c

m

A c 0 BcK

0 A s BsK

GC c GC s A c - BcK - GC c

m m

X c

X s

A

X c

(43)

Examination of the virtual compensator dynamics, equation (42), or the closed-loop dynamics,

equation (43), shows that optimal design using augmented sensor data allows the virtual LQG

compensator dynamics to revert to the simpler form of the standard optimal compensator.

However, the implemented compensator, equation (39), does contain the augmented thru-put

matrix, D t, and must be checked for stability independently of the closed-loop system matrix.

Thus, the use of sensor augmentation has eliminated the conflicting sign conditions present in the

implemented and virtual compensator dynamics, equations (20) and (23) respectively, that can

cause stabilization difficulties.

The system matrices requiting stabilization, or stability verification, using augmented

sensor design for accelerometers on flexible structures are shown in Table 2.
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Table 2. LQG Dynamic Matrices For Sensor Augmentation

• Controller

• Estimator

• Virtual Compensator

• Implemented Compensator

• Total Thru-Put Term

A c - BcK

Ac -GCc

Ac - BcK-

A c - BcK- GC c + GDtK

T T
D t = C c B c + C s B s

Dt =Dc +D s

In summary, system matrices must be checked for stability, namely, those of the controller,

the estimator, the virtual compensator, and the implemented compensator. The poles of the

controller, estimator, and virtual compensator appear in the closed-loop system dynamics and may

be checked for stability in the usual closed-loop stability analyses. The implemented compensator

does not explicitly appear in the closed-loop dynamics and must be checked for stability

independently of the closed-loop analysis.

5.0 CONCLUSION

Our analysis of LQG optimal control design involving systems that are not strictly proper has

shown that such systems generate control complexities: Two different LQG compensator forms

must be considered, namely, an implemented compensator and a virtual compensator. The

implemented compensator resides in the control electronics and generates the estimator-based

control signals. The virtual compensator appears in the closed-loop dynamics. The dynamic

properties of both forms strongly affect the robustness of the closed-loop system.

With regard to flexible structure control, the direct feedback of accelerometer signals results

in systems that are not strictly proper. The additional problems generated by uncontrolled modes

423



causeconflictingstabilityconstraintsin theimplementedandvirtualcompensatorsthatmakes

simultaneousstabilizationof bothformsdifficult to achieve.A new"algorithm, Sensor

Augmentation, has been developed that copes with this situation by incorporating a static

augmentation term in the design process that eliminates conflicting the stability constraints.
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